

WB-RR-96

Bradford Protein Assay Kit

Size: 750 tubes Spectrophotometer

3000 assays Microplate Reader

Components	Size	Storage	
Bradford Protein Assay Reagent*	6 x 100 ml	Store at 2-8°C for 12 months	
Albumin Standard BSA 5 mg/ml (lyophilized)	3 x 5 mg		

*Each vial of Bradford Assay Reagent 100ml develops 125 tests /spectrophotometer and 500 microplate assays

Introduction

Bradford Protein Assay Kit is a ready to use kit, based on Bradford -binding colorimetric method for the total protein quantification.

Preparation of Standards and Assay Reagents Albumin Standard Ampule (BSA standard):

- Reconstitute the lyophilized Albumin Standard vial with 1 ml of distilled water to get the 1 vial of liquid Albumin Standard with concentration 5 mg/ml.

Preparation of Albumin Standard (**BSA standard**): Once reconstituted the lyophilized Albumin Standard Ampules with 1 ml of distilled water see working range below in table 1.

Table 1. Preparation of Diluted BSA standards

Dilution scheme for Standard Test Tube and Microplate protocols- Working range =125-1,500 µg/ml

Tube No.	Volume of Diluent	BSA Standard	Final concentration
А	600 µl	400 μl (From 5 mg/ml tube)	2,000 µg/ml
В	125 µl	375 µl (Pipette from Tube A)	1,500 µg/ml
С	250 µl	250 µl (Pipette from Tube A)	1,000 µg/ml
D	175 µl	175 µl (Pipette from Tube B)	750 μg/ml
E	325 µl	325 µl (Pipette from Tube C)	500 μg/ml
F	325 µl	325 µl (Pipette from Tube E)	250 μg/ml
G	325 µl	325 µl (Pipette from Tube F)	125 µg/ml
Н	400 µl	100 µl (Pipette from Tube G)	25 µg/ml
I	400 µl	0	0 μg/ml (blank)

For Micro- Test Tube and Microplate protocols - Working range = 1-25 µg/ml

Tube No.	Volume of Diluent	BSA Standard	Final concentration
А	3,950 µl	50µl (From 5mg/ml tube)	25 µg/ml
В	800 µl	3,200 µl (Pipette from Tube A)	20 µg/ml
С	1,000 µl	3,000 µl (Pipette from Tube B)	15 µg/ml
D	1,000 µl	2,000 µl (Pipette from Tube C)	10 µg/ml
E	1,500 µl	1,500 µl (Pipette from Tube D)	5 µg/ml
F	1,500 µl	1,500 µl (Pipette from Tube E)	2.5 μg/ml
G	4,000 µl	0	0 µg/ml (blank)

Test Tube Procedures (Spectrophotometer)

A. Standard Test Tube Protocol (working range =125-1,500 µg/ml)

- 1. Pipette 0.05 ml (50µl) of BSA standard and unknown sample into an appropriately labeled test tube.
- **2.** Add 1.5 ml of Bradford –Regent to each tube and mix thoroughly.
- **3.** Incubate at room temperature for 10 min (For optional reference).
- **4.** With the spectrophotometer set to 595 nm, zero the instrument on a cuvette filled only with water. Then, measure the absorbance of all the samples.
- **5.** Subtract the average 595 nm absorbance measurement of the Blank standard replicates from the 595 nm absorbance measurement of all other individual standard and unknown sample replicates.
- 6. Prepare a standard curve by plotting the average Blank-corrected 595 nm measurement for each BSA standard & its concentration (μg/ml). Use the standard curve to determine the protein concentration of each unknown sample.

B. Micro Test Tube Protocol (working range = 1-25 µg/ml)

- 1. Pipette 1 ml of BSA standard and unknown sample into an appropriately labeled test tube.
- 2. Add 1 ml of Bradford Regent to each tube and mix thoroughly.
- 3. Incubate at room temperature for 10 min (For optional reference).
- **4.** With a spectrophotometer set to 595 nm zero the instrument on a cuvette filled only with water. Then, measure the absorbance of all the samples.
- 5. Subtract the average 595 nm absorbance measurement of the Blank standard replicates from the 595 nm
- 6. absorbance measurement of all other individual standard and unknown sample replicates.
- **7.** Prepare a standard curve by plotting the average Blank-corrected 595 nm measurement for each BSA standard & its concentration (μg/ml). Use the standard curve to determine the protein concentration of each unknown

Microplate Procedure

Standard Microplate Protocol (working range: 125-1500 µg/ml)

- 1. Pipette 10 µl of BSA standard and unknown sample to corresponding marked microplate wells.
- 2. Add 300 µl of Bradford Protein Assay Dye Regent to each well and mix thoroughly on the plate shaker for 30 seconds.
- **3.** Stop shaking. Generally, incubate at room temperature for 10 min.
- 4. Measure absorbance at 595 nm.
- **5.** Subtract the average 595 nm absorbance measurement of the Blank standard replicates from the 595 nm absorbance measurement of all other individual standard and unknown sample replicates.
- **6.** Prepare a standard curve by plotting the average Blank-corrected 595 nm measurement for each BSA standard & its concentration (μg/ml). Use the standard curve to determine the protein concentration of each unknown sample.

Micro-Microplate Protocol (working range: 1-25 µg/ml)

- **1.** Pipette 150 µl of BSA standard and unknown sample to corresponding marked microplate wells.
- 2. Add 150 µl of Bradford Protein Assay Dye Regent to each well and mix thoroughly on the plate shaker for 30 seconds.
- **3.** Stop shaking. Generally, incubate at room temperature for 10 min.
- 4. Measure absorbance at 595 nm.
- **5.** Subtract the average 595 nm absorbance measurement of the Blank standard replicates from the 595 nm absorbance measurement of all other individual standard and unknown sample replicates.
- 6. Prepare a standard curve by plotting the average Blank-corrected 595 nm measurement for each BSA standard & its concentration (µg/ml). Use the standard curve to determine the protein concentration of each unknown sample.

IMPORTANT NOTES

1. Equilibrate Bradford Reagent "G250" Dye Reagent to room temperature, and reverse 3-5 times to mix thoroughly before use.

2. Mix BSA standard thoroughly after dissolved, then dilute to a series of concentrations.

3. For the assay accuracy, please measure the absorbance within 5-20 min after all reagents added, since the color development is the most stable during this period.

- 4. Some cation, like K⁺, Na⁺, Mg²⁺, (NH4)₂SO4, ethanol etc. do not impact the determination, but a lot
- of detergent like Triton X-100, SDS etc. will seriously interference the determination.
- 5. Please wear the lab coat and disposable gloves to operate.

Storage : 2-8°C for 12 months.

For Research use only IMMUNOLOGICAL SCIENCES